PD - 90673B

International **ICR** Rectifier **RADIATION HARDENED POWER MOSFET** THRU-HOLE (TO-254AA)

IRHM7450 JANSR2N7270 500V, N-CHANNEL REF: MIL-PRF-19500/603 RAD-Hard[™] HEXFET[®] TECHNOLOGY

Product Summary

Part Number	Radiation Level	RDS(on)	lD	QPL Part Number
IRHM7450	100K Rads (Si)	0.45Ω	11A	JANSR2N7270
IRHM3450	300K Rads (Si)	0.45Ω	11A	JANSF2N7270
IRHM4450	500K Rads (Si)	0.45Ω	11A	JANSG2N7270
IRHM8450	1000K Rads (Si)	0.45Ω	11A	JANSH2N7270

International Rectifier's RAD-Hard[™] HEXFET[®] technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low Rdson and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters.

Due lune disting

Features:

- Single Event Effect (SEE) Hardened
- Low RDS(on)
- Low Total Gate Charge
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Ceramic Eyelets
- Light Weight

Absolute Maximum	Ratings	Pre-Irrac	liation
	Parameter		Units
ID @ VGS = 12V, TC = 25°C	Continuous Drain Current	11	
$I_D @ V_{GS} = 12V, T_C = 100^{\circ}C$	Continuous Drain Current	7.0	A
IDM	Pulsed Drain Current ①	44	
P _D @ T _C = 25°C	Max. Power Dissipation	150	W
	Linear Derating Factor	1.2	W/°C
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy 2	500	mJ
IAR	Avalanche Current ①	11	A
EAR	Repetitive Avalanche Energy ①	15	mJ
dv/dt	Peak Diode Recovery dv/dt 3	3.5	V/ns
TJ	Operating Junction	-55 to 150	
TSTG	Storage Temperature Range		°C
	Lead Temperature	300 (0.063 in. (1.6mm) from case for 10s)	
	Weight	9.3 (Typical)	g

Abcoluto Maximum Patingo

For footnotes refer to the last page

Pre-Irradiation

	Parameter		Тур	Мах	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	500	—	—	V	VGS =0 V, ID = 1.0mA
ΔBV _{DSS} /ΔTJ	Temperature Coefficient of Breakdown Voltage	—	0.6	—	V/°C	Reference to 25°C, ID = 1.0mA
RDS(on)	Static Drain-to-Source	_	—	0.45	_	VGS = 12V, ID = 7.0A ④
	On-State Resistance	—	—	0.50	Ω	V _{GS} = 12V, I _D = 11A
VGS(th)	Gate Threshold Voltage	2.0	—	4.0	V	$V_{DS} = V_{GS}$, $I_D = 1.0 \text{mA}$
9fs	Forward Transconductance	4.0	—	—	S (ʊ)	V _{DS} > 15V, I _{DS} = 7.0A ④
IDSS	Zero Gate Voltage Drain Current	_	—	50	μA	VDS= 400V,VGS=0V
		—	—	250	μΛ	$V_{DS} = 400V$
						$V_{GS} = 0V, T_{J} = 125^{\circ}C$
IGSS	Gate-to-Source Leakage Forward	_	—	100	nA	V _{GS} = 20V
IGSS	Gate-to-Source Leakage Reverse	_	—	-100	nA	VGS = -20V
Qg	Total Gate Charge	—	—	150		$V_{GS} = 12V, I_{D} = 11A$
Qgs	Gate-to-Source Charge	_	—	30	nC	VDS = 250V
Q _{gd}	Gate-to-Drain ('Miller') Charge	—	—	75		
^t d(on)	Turn-On Delay Time	—	—	45		$V_{DD} = 250V, I_D = 11A,$
tr	Rise Time		—	190	ns	$V_{GS} = 12V, R_{G} = 2.35\Omega$
^t d(off)	Turn-Off Delay Time		—	190	115	
tf	Fall Time	—	—	130		
LS + LD	Total Inductance	_	8.7		nH	Measured from drain lead (6mm/0.25in. from package) to source lead (6mm/0.25in. from package)
C _{iss}	Input Capacitance	_	4000			$V_{GS} = 0V, V_{DS} = 25V$
C _{OSS}	Output Capacitance		330	—	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	—	52	_		

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter			Тур	Max	Units	Test Conditions
IS	Continuous Source Current (Body Diode)			_	11	Λ	
ISM	Pulse Source Current (Body Diode) ①			—	44	A	
VSD	Diode Forward Voltage			—	1.6	V	$T_j = 25^{\circ}C$, $I_S = 11A$, $V_{GS} = 0V$ (4)
trr	Reverse Recovery Time			—	1100	ns	Tj = 25°C, IF = 11A, di/dt ≤ 100A/μs
QRR	Reverse Recovery Charge			—	16	μC	$V_{DD} \leq 50V $ (4)
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.					

Thermal Resistance

	Parameter	Min	Тур	Мах	Units	Test Conditions
RthJC	Junction-to-Case	—	—	0.83	0044	
RthCS	Case-to-sink	-	0.21	—	°C/W	
R _{th} JA	Junction-to-Ambient	-	—	48		Typical socket mount

Note: Corresponding Spice and Saber models are available on the International Rectifier Website. For footnotes refer to the last page

Radiation Characteristics

IRHM7450, JANSR2N7270

International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

	Parameter	100K Ra	ads(Si)1	300 K- 1000K Rads (Si) ²		Units	Test Conditions
		Min	Max	Min	Max		
BV _{DSS}	Drain-to-Source Breakdown Voltage	500	—	500	_	V	$V_{GS} = 0V, I_{D} = 1.0mA$
VGS(th)	Gate Threshold Voltage ④	2.0	4.0	1.25	4.5		$V_{GS} = V_{DS}, I_D = 1.0 \text{mA}$
I _{GSS}	Gate-to-Source Leakage Forward	_	100	—	100	nA	$V_{GS} = 20V$
IGSS	Gate-to-Source Leakage Reverse	—	-100	—	-100		V _{GS} = -20 V
IDSS	Zero Gate Voltage Drain Current	_	50	—	50	μA	V_{DS} =80V, V_{GS} =0V
R _{DS(on)}	Static Drain-to-Source ④	_	0.45	—	0.6	Ω	$V_{GS} = 12V, I_{D} = 7.0A$
	On-State Resistance (TO-3)						
R _{DS(on)}	Static Drain-to-Source ④	_	0.45	—	0.6	Ω	VGS = 12V, I _D = 7.0A
	On-State Resistance (TO-254AA)						
V _{SD}	Diode Forward Voltage ④	_	1.6	—	1.6	V	$V_{GS} = 0V, I_{S} = 11A$

1. Part number IRHM7450 (JANSR2N7270)

2. Part numbers IRHM3450 (JANSF2N7270), IRHM4450 (JANSG2N7270) and IRHM8450 (JANSH2N7270)

International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

lon	LET	Energy	Range	VDS (V)								
	(MeV/(mg/cm ²))	(MeV)	(µm)	@ VGS=0V	@VGS=-5V	@VGS=-10V	@VGS=-15V	@VGS=-20V				
Ni	28	265	41	275	275	-	-	-				

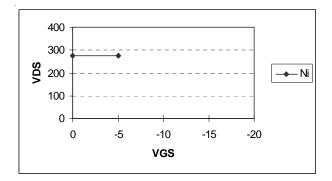


Fig a. Single Event Effect, Safe Operating Area

For footnotes refer to the last page

Post-Irradiation

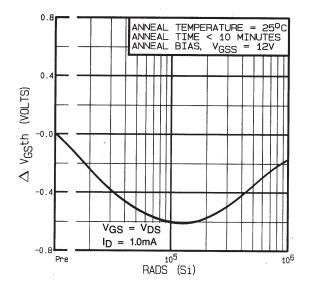


Fig 1. Typical Response of Gate Threshhold Voltage Vs. Total Dose Exposure

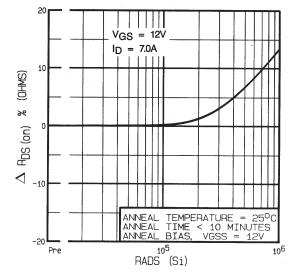
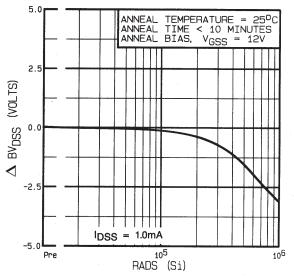
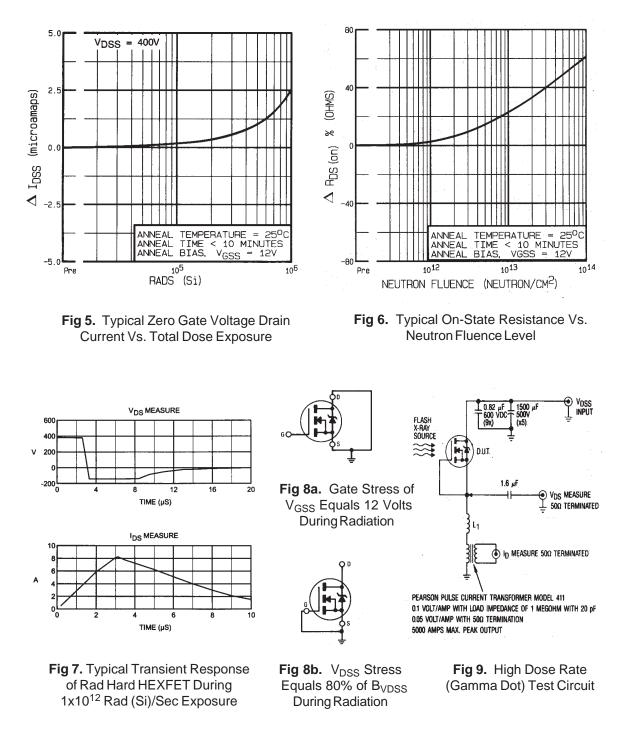
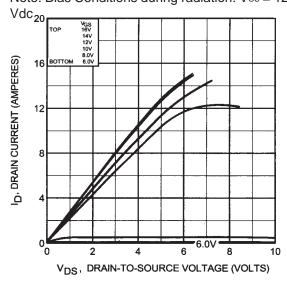


Fig 2. Typical Response of On-State Resistance Vs. Total Dose Exposure



Fig 3. Typical Response of Transconductance Vs. Total Dose Exposure


Fig 4. Typical Response of Drain to Source Breakdown Vs. Total Dose Exposure

Post-Irradiation

IRHM7450, JANSR2N7270

Radiation Characteristics

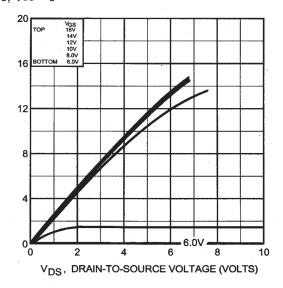
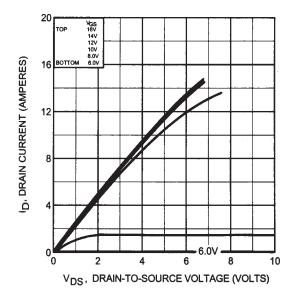
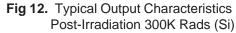




Fig 11. Typical Output Characteristics Post-Irradiation 100K Rads (Si)

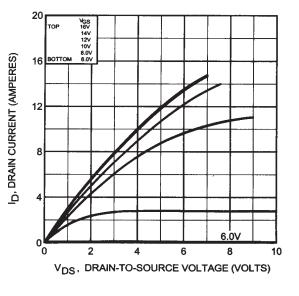
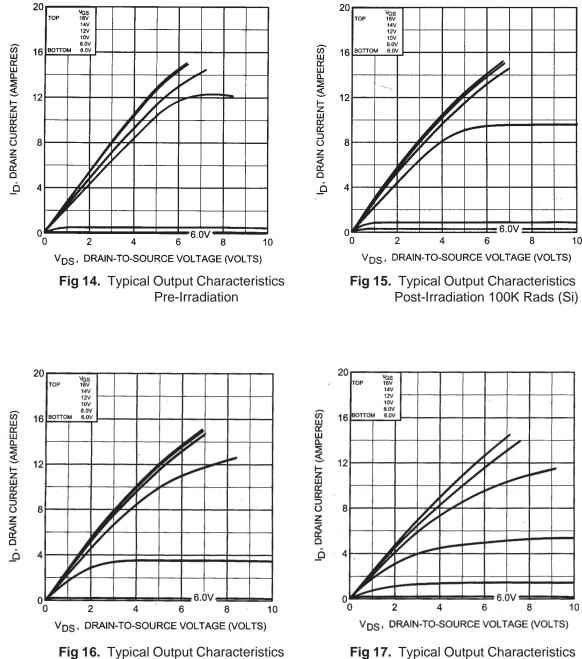



Fig 13. Typical Output Characteristics Post-Irradiation 1 Mega Rads(Si)

www.irf.com

Note: Bias Conditions during radiation: VGS = 12 Vdc, VDS = 0

Radiation Characteristics

Note: Bias Conditions during radiation: V_{GS} = 0 Vdc, V_{DS} = 400 Vdc

Fig 17. Typical Output Characteristics Post-Irradiation 1 Mega Rads(Si)

www.irf.com

Post-Irradiation 300K Rads (Si)

Pre-Irradiation

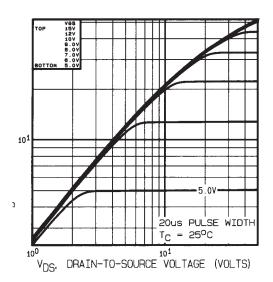


Fig 18. Typical Output Characteristics

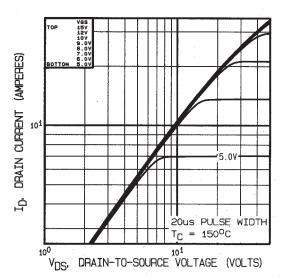


Fig 19. Typical Output Characteristics

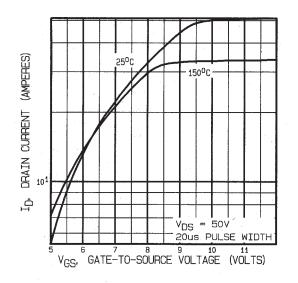
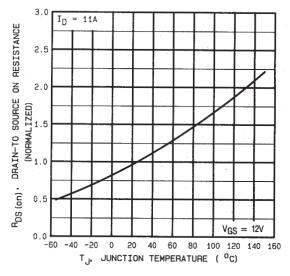
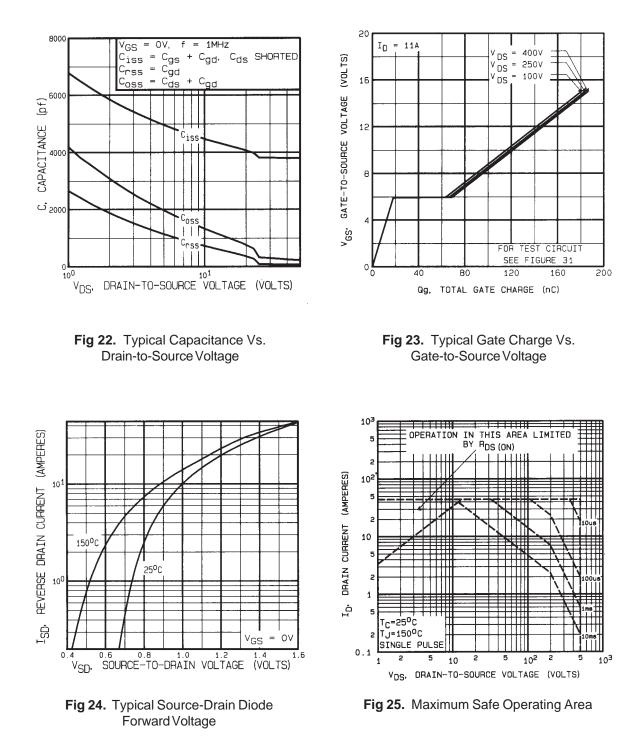


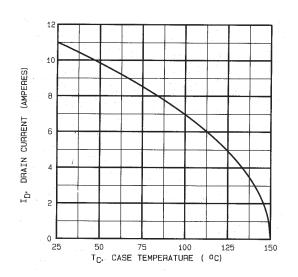
Fig 20. Typical Transfer Characteristics




Fig 21. Normalized On-Resistance Vs. Temperature

www.irf.com

8


Pre-Irradiation

IRHM7450, JANSR2N7270

www.irf.com

Pre-Irradiation

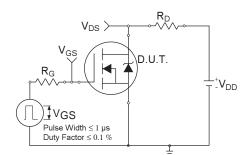


Fig 27a. Switching Time Test Circuit

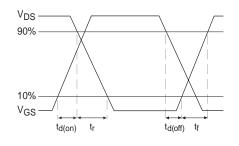


Fig 27b. Switching Time Waveforms

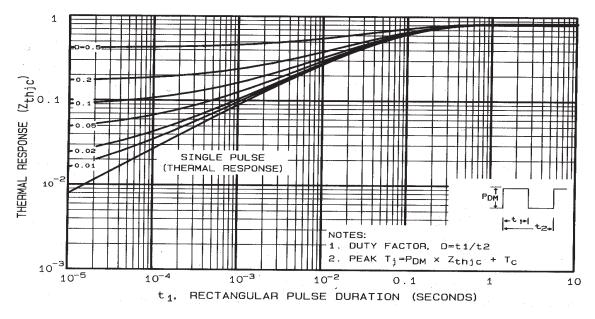
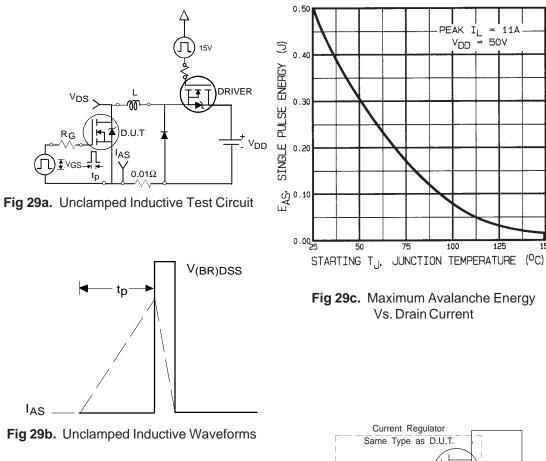



Fig 28. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Pre-Irradiation

IRHM7450, JANSR2N7270

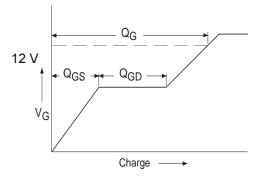


Fig 30a. Basic Gate Charge Waveform

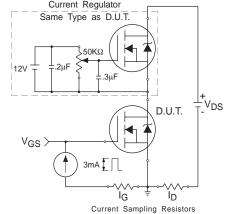
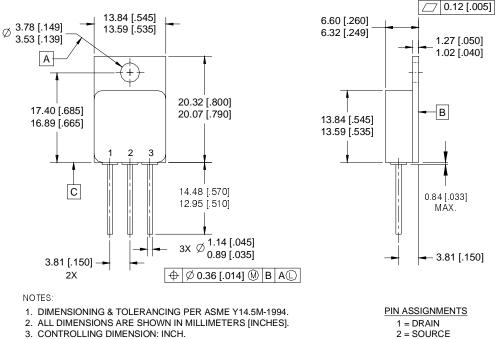


Fig 30b. Gate Charge Test Circuit

www.irf.com

150

Foot Notes:


- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- ② V_{DD} = 25V, starting T_J = 25°C, L ≥ 7.4mH Peak I_L = 11A, V_{GS} = 12V

- ④ Pulse width \leq 300 µs; Duty Cycle \leq 2%
- Total Dose Irradiation with V_{GS} Bias.
 12 volt V_{GS} applied and V_{DS} = 0 during irradiation per MIL-STD-750, method 1019, condition A.

Pre-Irradiation

(e) Total Dose Irradiation with V_{DS} Bias. 400 volt V_{DS} applied and V_{GS} = 0 during irradiation per MIL-STD-750, method 1019, condition A.

Case Outline and Dimensions — Low-Ohmic TO-254AA

CONFORMS TO JEDEC OUTLINE TO-254AA.

CONFORMS TO JEDEC OUTLINE TO-254AA

CAUTION BERYLLIA WARNING PER MIL-PRF-19500

Packages containing beryllia shall not be ground, sandblasted, machined or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxide packages shall not be placed in acids that will produce fumes containing beryllium.

International

3 = GATE

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 05/2006